Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38675418

RESUMEN

The synthesis of a series of new N-benzylidene derivatives of 3-amino-4-imino-3,5-dihydro-4H-chromeno[2,3-d]pyrimidine 10(a-l) bearing two points of molecular diversity is reported. These new compounds were synthesized in five steps including two steps under microwave dielectric heating. They were fully characterized using 1H and 13C NMR, FTIR and HRMS. The in silico physicochemical properties of compounds 10(a-l) were determined according to Lipinski's rules of five (RO5) associated with the prediction of their bioavailability. These new compounds 10(a-l) were tested for their antiproliferative activities in fibroblasts and eight representative human tumoral cell lines (Huh7 D12, Caco2, MDA-MB231, MDA-MB468, HCT116, PC3, MCF7 and PANC1). Among them, the compounds 10h and 10i showed sub-micromolar cytotoxic activity on tumor cell lines (0.23 < IC50 < 0.3 µM) and no toxicity on fibroblasts (IC50 > 25 µM). A dose-dependent inhibition of Store-Operated Ca+2 Entry (SOCE) was observed in the HEK293 cell line with 10h. In vitro embryotoxicity and angiogenesis on the mCherry transgenic zebrafish line showed that 10h presented no toxic effect and no angiogenic effect on embryos with a dose of 5 µM at 72 hpf.

2.
Eur J Pharmacol ; 971: 176515, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38547958

RESUMEN

Orai1 channel capacity to control store-operated Ca2+ entry (SOCE) and B-cell functions is poorly understood and more specifically in B-cell cancers, including human lymphoma and leukemia. As compared to normal B-cells, Orai1 is overexpressed in B-chronic lymphocytic leukemia (B-CLL) and contributes in resting B-CLL to mediate an elevated basal Ca2+ level through a constitutive Ca2+ entry, and in BCR-activated B-cell to regulate the Ca2+ signaling response. Such observations were confirmed in human B-cell lymphoma and leukemia lines, including RAMOS, JOK-1, MEC-1 and JVM-3 cells. Next, the use of pharmacological Orai1 inhibitors (GSK-7975 A and Synta66) blocks constitutive Ca2+ entry and in turn affects B-cell cancer (primary and cell lines) survival and migration, controls cell cycle, and induces apoptosis through a mitochondrial and caspase-3 independent pathway. Finally, the added value of Orai1 inhibitors in combination with B-CLL drugs (ibrutinib, idelalisib, rituximab, and venetoclax) on B-CLL survival was tested, showing an additive/synergistic effect including in the B-cell cancer lines. To conclude, this study highlights the pathophysiological role of the Ca2+ channel Orai1 in B-cell cancers, and pave the way for the use of ORAI1 modulators as a plausible therapeutic strategy.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Señalización del Calcio , Supervivencia Celular , Linfocitos B/metabolismo , Línea Celular , Proteína ORAI1/metabolismo , Calcio/metabolismo , Molécula de Interacción Estromal 1/metabolismo
3.
Biochem Pharmacol ; 219: 115955, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040093

RESUMEN

In non-excitable cells, Orai proteins represent the main channel for Store-Operated Calcium Entry (SOCE), and also mediate various store-independent Calcium Entry (SICE) pathways. Deregulation of these pathways contribute to increased tumor cell proliferation, migration, metastasis, and angiogenesis. Among Orais, Orai1 is an attractive therapeutic target explaining the development of specific modulators. Therapeutic trials using Orai1 channel inhibitors have been evaluated for treating diverse diseases such as psoriasis and acute pancreatitis, and emerging data suggest that Orai1 channel modulators may be beneficial for cancer treatment. This review discusses herein the importance of Orai1 channel modulators as potential therapeutic tools and the added value of these modulators for treating cancer.


Asunto(s)
Neoplasias , Pancreatitis , Humanos , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Enfermedad Aguda , Neoplasias/tratamiento farmacológico , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo
4.
EMBO Mol Med ; 15(12): e17719, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37966164

RESUMEN

Metastatic uveal melanomas are highly resistant to all existing treatments. To address this critical issue, we performed a kinome-wide CRISPR-Cas9 knockout screen, which revealed the LKB1-SIK2 module in restraining uveal melanoma tumorigenesis. Functionally, LKB1 loss enhances proliferation and survival through SIK2 inhibition and upregulation of the sodium/calcium (Na+ /Ca2+ ) exchanger SLC8A1. This signaling cascade promotes increased levels of intracellular calcium and mitochondrial reactive oxygen species, two hallmarks of cancer. We further demonstrate that combination of an SLC8A1 inhibitor and a mitochondria-targeted antioxidant promotes enhanced cell death efficacy in LKB1- and SIK2-negative uveal melanoma cells compared to control cells. Our study also identified an LKB1-loss gene signature for the survival prognostic of patients with uveal melanoma that may be also predictive of response to the therapy combination. Our data thus identify not only metabolic vulnerabilities but also new prognostic markers, thereby providing a therapeutic strategy for particular subtypes of metastatic uveal melanoma.


Asunto(s)
Melanoma , Neoplasias de la Úvea , Humanos , Calcio , Proliferación Celular , Melanoma/tratamiento farmacológico , Especies Reactivas de Oxígeno , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/patología
5.
Cell Calcium ; 115: 102794, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37597301

RESUMEN

Prostate cancer (PCa) represents one of the most frequent diagnosed cancer in males worldwide. Due to routine screening tests and the efficiency of available treatments, PCa-related deaths have significantly decreased over the past decades. However, PCa remains a critical threat if detected at a late stage in which, cancer cells would have already detached from the primary tumor to spread and invade other parts of the body. Calcium (Ca2+) channels and their protein regulators are now considered as hallmarks of cancer and some of them have been well examined in PCa. Among these Ca2+ channels, isoform 3 of the ORAI channel family has been shown to regulate the proliferation of PCa cells via the Arachidonic Acid-mediated Ca2+ entry, requiring the involvement of STIM1 (Stromal Interaction Molecule 1). Still, no study has yet demonstrated a role of the "neglected" STIM2 isoform in PCa or if it may interact with ORAI3 to promote an oncogenic behavior. In this study, we demonstrate that ORAI3 and STIM2 are upregulated in human PCa tissues. In old KIMAP (Knock-In Mouse Prostate Adenocarcinoma) mice, ORAI3 and STIM2 mRNA levels were significantly higher than ORAI1 and STIM1. In vitro, we show that ORAI3-STIM2 interact under basal conditions in PC-3 cells. ORAI3 silencing increased Store Operated Ca2+ Entry (SOCE) and induced a significant increase of the cell population in G2/M phase of the cell cycle, consistent with the role of ORAI3 as a negative regulator of SOCE. Higher expression levels of CDK1-Y15/Cyclin B1 were detected and mitotic arrest-related death occurred after ORAI3 silencing, which resulted in activating Bax/Bcl-2-mediated apoptotic pathway and caspase-8 activation and cleavage. STIM2 and ORAI3 expression increased in M phase while STIM1 expression and SOCE amplitude significantly decreased. Taken together, ORAI3 -STIM2 complex allows a successful progression through mitosis of PCa cells by evading mitotic catastrophe.

6.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35743210

RESUMEN

CBS encodes a pyridoxal 5'-phosphate-dependent enzyme that catalyses the condensation of homocysteine and serine to form cystathionine. Due to its implication in some cancers and in the cognitive pathophysiology of Down syndrome, the identification of pharmacological inhibitors of this enzyme is urgently required. However, thus far, attempts to identify such molecules have only led to the identification of compounds with low potency and limited selectivity. We consequently developed an original, yeast-based screening method that identified three FDA-approved drugs of the 8-hydroxyquinoline family: clioquinol, chloroxine and nitroxoline. These molecules reduce CBS enzymatic activity in different cellular models, proving that the molecular mechanisms involved in yeast phenotypic rescue are conserved in mammalian cells. A combination of genetic and chemical biology approaches also revealed the importance of copper and zinc intracellular levels in the regulation of CBS enzymatic activity-copper promoting CBS activity and zinc inhibiting its activity. Taken together, these results indicate that our effective screening approach identified three new potent CBS inhibitors and provides new findings for the regulation of CBS activity, which is crucial to develop new therapies for CBS-related human disorders.


Asunto(s)
Cistationina betasintasa , Saccharomyces cerevisiae , Animales , Cobre , Cistationina betasintasa/genética , Humanos , Mamíferos , Oxiquinolina/farmacología , Fosfato de Piridoxal , Zinc
7.
Front Immunol ; 13: 818814, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359922

RESUMEN

Regulatory B cells (Bregs) have been highlighted in very different pathology settings including autoimmune diseases, allergy, graft rejection, and cancer. Improving tools for the characterization of Bregs has become the main objective especially in humans. Transitional, mature B cells and plasma cells can differentiate into IL-10 producing Bregs in both mice and humans, suggesting that Bregs are not derived from unique precursors but may arise from different competent progenitors at unrestricted development stages. Moreover, in addition to IL-10 production, regulatory B cells used a broad range of suppressing mechanisms to modulate the immune response. Although Bregs have been consistently described in the literature, only a few reports described the molecular aspects that control the acquisition of the regulatory function. In this manuscript, we detailed the latest reports describing the control of IL-10, TGFß, and GZMB production in different Breg subsets at the molecular level. We focused on the understanding of the role of the transcription factors STAT3 and c-MAF in controlling IL-10 production in murine and human B cells and how these factors may represent an important crossroad of several key drivers of the Breg response. Finally, we provided original data supporting the evidence that MAF is expressed in human IL-10- producing plasmablast and could be induced in vitro following different stimulation cocktails. At steady state, we reported that MAF is expressed in specific human B-cell tonsillar subsets including the IgD+ CD27+ unswitched population, germinal center cells and plasmablast.


Asunto(s)
Enfermedades Autoinmunes , Linfocitos B Reguladores , Animales , Enfermedades Autoinmunes/patología , Interleucina-10 , Recuento de Linfocitos , Ratones , Células Plasmáticas , Proteínas Proto-Oncogénicas c-maf/genética
8.
Rev Physiol Biochem Pharmacol ; 183: 157-176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-32767122

RESUMEN

The intracellular Ca2+ concentration is mainly controlled by Ca2+ channels. These channels form complexes with K+ channels, which function to amplify Ca2+ flux. In cancer cells, voltage-gated/voltage-dependent Ca2+ channels and non-voltage-gated/voltage-independent Ca2+ channels have been reported to interact with K+ channels such as Ca2+-activated K+ channels and voltage-gated K+ channels. These channels are activated by an increase in cytosolic Ca2+ concentration or by membrane depolarization, which induces membrane hyperpolarization, increasing the driving force for Ca2+ flux. These complexes, composed of K+ and Ca2+ channels, are regulated by several molecules including lipids (ether lipids and cholesterol), proteins (e.g. STIM), receptors (e.g. S1R/SIGMAR1), and peptides (e.g. LL-37) and can be targeted by monoclonal antibodies, making them novel targets for cancer research.


Asunto(s)
Neoplasias , Canales de Potasio con Entrada de Voltaje , Calcio/metabolismo , Canales de Calcio/metabolismo , Humanos , Lípidos , Neoplasias/tratamiento farmacológico , Potasio/metabolismo , Canales de Potasio/metabolismo
9.
Front Neurosci ; 16: 1110163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36711154

RESUMEN

Down syndrome (DS), the most frequent chromosomic aberration, results from the presence of an extra copy of chromosome 21. The identification of genes which overexpression contributes to intellectual disability (ID) in DS is important to understand the pathophysiological mechanisms involved and develop new pharmacological therapies. In particular, gene dosage of Dual specificity tyrosine phosphorylation Regulated Kinase 1A (DYRK1A) and of Cystathionine beta synthase (CBS) are crucial for cognitive function. As these two enzymes have lately been the main targets for therapeutic research on ID, we sought to decipher the genetic relationship between them. We also used a combination of genetic and drug screenings using a cellular model overexpressing CYS4, the homolog of CBS in Saccharomyces cerevisiae, to get further insights into the molecular mechanisms involved in the regulation of CBS activity. We showed that overexpression of YAK1, the homolog of DYRK1A in yeast, increased CYS4 activity whereas GSK3ß was identified as a genetic suppressor of CBS. In addition, analysis of the signaling pathways targeted by the drugs identified through the yeast-based pharmacological screening, and confirmed using human HepG2 cells, emphasized the importance of Akt/GSK3ß and NF-κB pathways into the regulation of CBS activity and expression. Taken together, these data provide further understanding into the regulation of CBS and in particular into the genetic relationship between DYRK1A and CBS through the Akt/GSK3ß and NF-κB pathways, which should help develop more effective therapies to reduce cognitive deficits in people with DS.

10.
Mar Drugs ; 19(7)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34356812

RESUMEN

Ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning syndromes are induced by the consumption of seafood contaminated by ciguatoxins and brevetoxins. Both toxins cause sensory symptoms such as paresthesia, cold dysesthesia and painful disorders. An intense pruritus, which may become chronic, occurs also in CFP. No curative treatment is available and the pathophysiology is not fully elucidated. Here we conducted single-cell calcium video-imaging experiments in sensory neurons from newborn rats to study in vitro the ability of Pacific-ciguatoxin-2 (P-CTX-2) and brevetoxin-1 (PbTx-1) to sensitize receptors and ion channels, (i.e., to increase the percentage of responding cells and/or the response amplitude to their pharmacological agonists). In addition, we studied the neurotrophin release in sensory neurons co-cultured with keratinocytes after exposure to P-CTX-2. Our results show that P-CTX-2 induced the sensitization of TRPA1, TRPV4, PAR2, MrgprC, MrgprA and TTX-r NaV channels in sensory neurons. P-CTX-2 increased the release of nerve growth factor and brain-derived neurotrophic factor in the co-culture supernatant, suggesting that those neurotrophins could contribute to the sensitization of the aforementioned receptors and channels. Our results suggest the potential role of sensitization of sensory receptors/ion channels in the induction or persistence of sensory disturbances in CFP syndrome.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas/farmacología , Toxinas Marinas/farmacología , Oxocinas/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Animales , Animales Recién Nacidos , Organismos Acuáticos , Modelos Animales , Océano Pacífico , Dolor/metabolismo , Prurito/metabolismo , Ratas , Ratas Wistar
11.
Cell Calcium ; 97: 102435, 2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34167050

RESUMEN

The Transient Receptor Potential Vanilloid type 2 (TRPV2) channel is highly selective for Ca2+ and can be activated by lipids, such as LysoPhosphatidylCholine (LPC). LPC analogues, such as the synthetic alkyl-ether-lipid edelfosine or the endogenous alkyl-ether-lipid Platelet Activating Factor (PAF), modulates ion channels in cancer cells. This opens the way to develop alkyl-ether-lipids for the modulation of TRPV2 in cancer. Here, we investigated the role of 2-Acetamido-2-Deoxy-l-O-Hexadecyl-rac-Glycero-3-PhosphatidylCholine (AD-HGPC), a new alkyl-ether-lipid (LPC analogue), on TRPV2 trafficking and its impact on Ca2+ -dependent cell migration. The effect of AD-HGPC on the TRPV2 channel and tumour process was further investigated using calcium imaging and an in vivo mouse model. Using molecular and pharmacological approaches, we dissected the mechanism implicated in alkyl-ether-lipids sensitive TRPV2 trafficking. We found that TRPV2 promotes constitutive Ca2+ entry, leading to migration of highly metastatic breast cancer cell lines through the PI3K/Akt-Girdin axis. AD-HGPC addresses the functional TRPV2 channel in the plasma membrane through Golgi stimulation and PI3K/Akt/Rac-dependent cytoskeletal reorganization, leading to constitutive Ca2+ entry and breast cancer cell migration (without affecting the development of metastasis), in a mouse model. We describe, for the first time, the biological role of a new alkyl-ether-lipid on TRPV2 channel trafficking in breast cancer cells and highlight the potential modulation of TRPV2 by alkyl-ether-lipids as a novel avenue for research in the treatment of metastatic cancer.

12.
Immunology ; 164(1): 120-134, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34041745

RESUMEN

Antibody-secreting cells (ASC) are divided into two principal subsets, including the long-lived plasma cell (PC) subset residing in the bone marrow and the short-lived subset, also called plasmablast (PB). PB are described as a proliferating subset circulating through the blood and ending its differentiation in tissues. Due to their inherent heterogeneity, the molecular signature of PB is not fully established. The purpose of this study was to decipher a specific PB signature in humans and mice through a comprehensive meta-analysis of different data sets exploring the PB differentiation in both species and across different experimental conditions. The present study used recent analyses using whole RNA sequencing in prdm1-GFP transgenic mice to define a reliable and accurate PB signature. Next, we performed similar analysis using current data sets obtained from human PB and PC. The PB-specific signature is composed of 155 and 113 genes in mouse and human being, respectively. Although only nine genes are shared between the human and mice PB signature, the loss of B-cell identity such as the down-regulation of PAX5, MS4A1, (CD20) CD22 and IL-4R is a conserved feature across species and across the different experimental conditions. Additionally, we observed that the IRF8 and IRF4 transcription factors have a specific dynamic range of expression in human PB. We thus demonstrated that IRF4/IRF8 intranuclear staining was useful to define PB in vivo and in vitro and able to discriminate between atypical PB populations and transient states.


Asunto(s)
Células Productoras de Anticuerpos/inmunología , Linfocitos B/inmunología , Células Plasmáticas/inmunología , Animales , Antígenos CD20/genética , Diferenciación Celular , Glicoproteínas/genética , Humanos , Ratones , Ratones Transgénicos/genética , Factor de Transcripción PAX5/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Análisis de Secuencia de ARN , Transcriptoma , Secuenciación Completa del Genoma
13.
J Cell Sci ; 134(3)2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33468626

RESUMEN

Since deregulation of intracellular Ca2+ can lead to intracellular trypsin activation, and stromal interaction molecule-1 (STIM1) protein is the main regulator of Ca2+ homeostasis in pancreatic acinar cells, we explored the Ca2+ signaling in 37 STIM1 variants found in three pancreatitis patient cohorts. Extensive functional analysis of one particular variant, p.E152K, identified in three patients, provided a plausible link between dysregulated Ca2+ signaling within pancreatic acinar cells and chronic pancreatitis susceptibility. Specifically, p.E152K, located within the STIM1 EF-hand and sterile α-motif domain, increased the release of Ca2+ from the endoplasmic reticulum in patient-derived fibroblasts and transfected HEK293T cells. This event was mediated by altered STIM1-sarco/endoplasmic reticulum calcium transport ATPase (SERCA) conformational change and enhanced SERCA pump activity leading to increased store-operated Ca2+ entry (SOCE). In pancreatic AR42J cells expressing the p.E152K variant, Ca2+ signaling perturbations correlated with defects in trypsin activation and secretion, and increased cytotoxicity after cholecystokinin stimulation.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Señalización del Calcio , Proteínas de Neoplasias , Pancreatitis Crónica , Molécula de Interacción Estromal 1 , Calcio/metabolismo , Señalización del Calcio/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Mutación/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Pancreatitis Crónica/genética , Pancreatitis Crónica/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
14.
J Invest Dermatol ; 141(3): 648-658.e3, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32800876

RESUMEN

Ciguatera fish poisoning is caused by the consumption of fish contaminated with ciguatoxins (CTXs). The most distressing symptoms are cutaneous sensory disturbances, including cold dysesthesia and itch. CTXs are neurotoxins known to activate voltage-gated sodium channels, but no specific treatment exists. Peptidergic neurons have been critically involved in ciguatera fish poisoning sensory disturbances. Protease-activated receptor-2 (PAR2) is an itch- and pain-related G protein‒coupled receptor whose activation leads to a calcium-dependent neuropeptide release. In this study, we studied the role of voltage-gated sodium channels, PAR2, and the PAR2 agonist cathepsin S in the cytosolic calcium increase and subsequent release of the neuropeptide substance P elicited by Pacific CTX-2 (P-CTX-2) in rat sensory neurons and human epidermal keratinocytes. In sensory neurons, the P-CTX-2‒evoked calcium response was driven by voltage-gated sodium channels and PAR2-dependent mechanisms. In keratinocytes, P-CTX-2 also induced voltage-gated sodium channels and PAR2-dependent marked calcium response. In the cocultured cells, P-CTX-2 significantly increased cathepsin S activity, and cathepsin S and PAR2 antagonists almost abolished P-CTX-2‒elicited substance P release. Keratinocytes synergistically favored the induced substance P release. Our results demonstrate that the sensory effects of CTXs involve the cathepsin S-PAR2 pathway and are potentiated by their direct action on nonexcitable keratinocytes through the same pathway.


Asunto(s)
Intoxicación por Ciguatera/patología , Ciguatoxinas/toxicidad , Epidermis/patología , Queratinocitos/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Calcio/metabolismo , Catepsinas/metabolismo , Intoxicación por Ciguatera/complicaciones , Técnicas de Cocultivo , Citosol/metabolismo , Modelos Animales de Enfermedad , Epidermis/inervación , Humanos , Microscopía Intravital , Queratinocitos/efectos de los fármacos , Queratinocitos/patología , Parestesia/etiología , Parestesia/patología , Cultivo Primario de Células , Prurito/etiología , Prurito/patología , Ratas , Receptor PAR-2/agonistas , Receptor PAR-2/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Análisis de la Célula Individual , Sustancia P/metabolismo
15.
Cells ; 9(12)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348659

RESUMEN

Red tides involving Karenia brevis expose humans to brevetoxins (PbTxs). Oral exposition triggers neurotoxic shellfish poisoning, whereas inhalation induces a respiratory syndrome and sensory disturbances. No curative treatment is available and the pathophysiology is not fully elucidated. Protease-activated receptor 2 (PAR2), cathepsin S (Cat-S) and substance P (SP) release are crucial mediators of the sensory effects of ciguatoxins (CTXs) which are PbTx analogs. This work explored the role of PAR2 and Cat-S in PbTx-1-induced sensory effects and deciphered the signaling pathway involved. We performed calcium imaging, PAR2 immunolocalization and SP release experiments in monocultured sensory neurons or co-cultured with keratinocytes treated with PbTx-1 or P-CTX-2. We demonstrated that PbTx-1-induced calcium increase and SP release involved Cat-S, PAR2 and transient receptor potential vanilloid 4 (TRPV4). The PbTx-1-induced signaling pathway included protein kinase A (PKA) and TRPV4, which are compatible with the PAR2 biased signaling induced by Cat-S. Internalization of PAR2 and protein kinase C (PKC), inositol triphosphate receptor and TRPV4 activation evoked by PbTx-1 are compatible with the PAR2 canonical signaling. Our results suggest that PbTx-1-induced sensory disturbances involve the PAR2-TRPV4 pathway. We identified PAR2, Cat-S, PKA, and PKC that are involved in TRPV4 sensitization induced by PbTx-1 in sensory neurons.


Asunto(s)
Calcio/metabolismo , Toxinas Marinas/farmacología , Oxocinas/farmacología , Receptor PAR-2/metabolismo , Transducción de Señal/efectos de los fármacos , Sustancia P/metabolismo , Animales , Catepsinas/genética , Catepsinas/metabolismo , Catepsinas/farmacología , Células Cultivadas , Dipéptidos/farmacología , Potenciales Evocados/efectos de los fármacos , Humanos , Isoxazoles/farmacología , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar , Receptor PAR-2/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/farmacología , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo
16.
Cells ; 9(10)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066435

RESUMEN

Ciguatera fish poisoning (CFP), the most prevalent seafood poisoning worldwide, is caused by the consumption of tropical and subtropical fish contaminated with potent neurotoxins called ciguatoxins (CTXs). Ciguatera is a complex clinical syndrome in which peripheral neurological signs predominate in the acute phase of the intoxication but also persist or reoccur long afterward. Their recognition is of particular importance in establishing the diagnosis, which is clinically-based and can be a challenge for physicians unfamiliar with CFP. To date, no specific treatment exists. Physiopathologically, the primary targets of CTXs are well identified, as are the secondary events that may contribute to CFP symptomatology. This review describes the clinical features, focusing on the sensory disturbances, and then reports on the neuronal targets and effects of CTXs, as well as the neurophysiological and histological studies that have contributed to existing knowledge of CFP neuropathophysiology at the molecular, neurocellular and nerve levels.


Asunto(s)
Intoxicación por Ciguatera/fisiopatología , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/fisiopatología , Potenciales de Acción , Animales , Intoxicación por Ciguatera/diagnóstico , Intoxicación por Ciguatera/prevención & control , Intoxicación por Ciguatera/terapia , Ciguatoxinas/química , Errores Diagnósticos , Humanos , Enfermedades del Sistema Nervioso/epidemiología , Prevalencia
17.
Ann Neurol ; 88(6): 1205-1219, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32951274

RESUMEN

OBJECTIVE: Pain, temperature, and itch are conventionally thought to be exclusively transduced by the intraepidermal nerve endings. Although recent studies have shown that epidermal keratinocytes also participate in sensory transduction, the mechanism underlying keratinocyte communication with intraepidermal nerve endings remains poorly understood. We sought to demonstrate the synaptic character of the contacts between keratinocytes and sensory neurons and their involvement in sensory communication between keratinocytes and sensory neurons. METHODS: Contacts were explored by morphological, molecular, and functional approaches in cocultures of epidermal keratinocytes and sensory neurons. To interrogate whether structures observed in vitro were also present in the human epidermis, in situ correlative light electron microscopy was performed on human skin biopsies. RESULTS: Epidermal keratinocytes dialogue with sensory neurons through en passant synaptic-like contacts. These contacts have the ultrastructural features and molecular hallmarks of chemical synaptic-like contacts: narrow intercellular cleft, keratinocyte synaptic vesicles expressing synaptophysin and synaptotagmin 1, and sensory information transmitted from keratinocytes to sensory neurons through SNARE-mediated (syntaxin1) vesicle release. INTERPRETATION: By providing selective communication between keratinocytes and sensory neurons, synaptic-like contacts are the hubs of a 2-site receptor. The permanent epidermal turnover, implying a specific en passant structure and high plasticity, may have delayed their identification, thereby contributing to the long-held concept of nerve endings passing freely between keratinocytes. The discovery of keratinocyte-sensory neuron synaptic-like contacts may call for a reassessment of basic assumptions in cutaneous sensory perception and sheds new light on the pathophysiology of pain and itch as well as the physiology of touch. ANN NEUROL 2020;88:1205-1219.


Asunto(s)
Queratinocitos/ultraestructura , Células Receptoras Sensoriales/ultraestructura , Sinapsis/ultraestructura , Adulto , Anciano , Animales , Técnicas de Cocultivo , Epidermis/inervación , Femenino , Humanos , Queratinocitos/metabolismo , Masculino , Microscopía Electrónica , Persona de Mediana Edad , Proteínas Qa-SNARE/metabolismo , Ratas , Vesículas Sinápticas/metabolismo , Sinaptofisina/metabolismo , Sinaptotagmina I/metabolismo
19.
Cells ; 9(4)2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316463

RESUMEN

Skin-derived precursor cells (SKPs) are neural crest stem cells that persist in certain adult tissues, particularly in the skin. They can generate a large type of cell in vitro, including neurons. SKPs were induced to differentiate into sensory neurons (SNs) by molecules that were previously shown to be important for the generation of SNs: purmorphamine, CHIR99021, BMP4, GDNF, BDNF, and NGF. We showed that the differentiation of SKPs induced the upregulation of neurogenins. At the end of the differentiation protocol, transcriptional analysis was performed on BRN3A and a marker of pain-sensing nerve cell PRDM12 genes: 1000 times higher for PRDM12 and 2500 times higher for BRN3A in differentiated cells than they were in undifferentiated SKPs. Using immunostaining, we showed that 65% and 80% of cells expressed peripheral neuron markers BRN3A and PERIPHERIN, respectively. Furthermore, differentiated cells expressed TRPV1, PAR2, TRPA1, substance P, CGRP, HR1. Using calcium imaging, we observed that a proportion of cells responded to histamine, SLIGKV (a specific agonist of PAR2), polygodial (a specific agonist of TRPA1), and capsaicin (a specific agonist of TRPV1). In conclusion, SKPs are able to differentiate directly into functional SNs. These differentiated cells will be very useful for further in vitro studies.


Asunto(s)
Células Receptoras Sensoriales/metabolismo , Piel/metabolismo , Trasplante de Células Madre/métodos , Diferenciación Celular , Células Cultivadas , Humanos
20.
J Immunother Cancer ; 7(1): 111, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31014395

RESUMEN

BACKGROUND: Dysregulation in calcium (Ca2+) signaling is a hallmark of chronic lymphocytic leukemia (CLL). While the role of the B cell receptor (BCR) Ca2+ pathway has been associated with disease progression, the importance of the newly described constitutive Ca2+ entry (CE) pathway is less clear. In addition, we hypothesized that these differences reflect modifications of the CE pathway and Ca2+ actors such as Orai1, transient receptor potential canonical (TRPC) 1, and stromal interaction molecule 1 (STIM1), the latter being the focus of this study. METHODS: An extensive analysis of the Ca2+ entry (CE) pathway in CLL B cells was performed including constitutive Ca2+ entry, basal Ca2+ levels, and store operated Ca2+ entry (SOCE) activated following B cell receptor engagement or using Thapsigargin. The molecular characterization of the calcium channels Orai1 and TRPC1 and to their partner STIM1 was performed by flow cytometry and/or Western blotting. Specific siRNAs for Orai1, TRPC1 and STIM1 plus the Orai1 channel blocker Synta66 were used. CLL B cell viability was tested in the presence of an anti-STIM1 monoclonal antibody (mAb, clone GOK) coupled or not with an anti-CD20 mAb, rituximab. The Cox regression model was used to determine the optimal threshold and to stratify patients. RESULTS: Seeking to explore the CE pathway, we found in untreated CLL patients that an abnormal CE pathway was (i) highly associated with the disease outcome; (ii) positively correlated with basal Ca2+ concentrations; (iii) independent from the BCR-PLCγ2-InsP3R (SOCE) Ca2+ signaling pathway; (iv) supported by Orai1 and TRPC1 channels; (v) regulated by the pool of STIM1 located in the plasma membrane (STIM1PM); and (vi) blocked when using a mAb targeting STIM1PM. Next, we further established an association between an elevated expression of STIM1PM and clinical outcome. In addition, combining an anti-STIM1 mAb with rituximab significantly reduced in vitro CLL B cell viability within the high STIM1PM CLL subgroup. CONCLUSIONS: These data establish the critical role of a newly discovered BCR independent Ca2+ entry in CLL evolution, provide new insights into CLL pathophysiology, and support innovative therapeutic perspectives such as targeting STIM1 located at the plasma membrane.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Linfocitos B/efectos de los fármacos , Señalización del Calcio/genética , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Proteínas de Neoplasias/antagonistas & inhibidores , Molécula de Interacción Estromal 1/antagonistas & inhibidores , Anciano , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Calcio/inmunología , Calcio/metabolismo , Señalización del Calcio/inmunología , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Progresión de la Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/antagonistas & inhibidores , Proteína ORAI1/genética , Proteína ORAI1/inmunología , Proteína ORAI1/metabolismo , Cultivo Primario de Células , Estudios Prospectivos , ARN Interferente Pequeño/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/inmunología , Canales Catiónicos TRPC/metabolismo , Resultado del Tratamiento , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...